Categories
Industrial & Service Transformation Latest news

Big Data that respects privacy

A mathematician develops new algorithms that allow the analysis of encrypted data without ever having to decipher it—a crucial point to ensure their confidentiality.

This article was originally published by the Luxembourg National Research Fund

The development of contact tracing applications during the COVID-19 epidemic quickly split society in two. Some were willing to sacrifice privacy for the sake of public health, arguing in favour of an app capable of locating people. Others demanded limited, anonymous, GPS-free solutions to avoid the spectre of an omniscient government.

The ideal would have been to combine the two and have an app capable of locating people who have been close to the virus carriers while ensuring that the data was not legible by the authorities. However, this idea would require algorithms that could work on encrypted data, a task that is impossible to achieve to this day.

“Sociological and psychological factors play a huge role in our cognitive reserve, meaning our capacity to resist the deterioration of our mental abilities,” explains Anja Leist. So far, scientists have identified factors explaining half of the differences observed in the population. A further 30% could be traced to factors such as education, social isolation, “This is one of the major weaknesses of current encryption systems,” explains Jean-Sébastien Coron, a mathematician at the University of Luxembourg. “Data is encrypted both during transmission and storage, which is good. But it has to be decrypted to be used in applications”.


Jean-Sébastien Coron © FNR / Rick Tonizzo

The French-born researcher is developing techniques that ensure that sensitive data is not only encrypted when it is transferred over the Internet but also remains encrypted when it is analysed. They would thus remain unreadable from start to finish, from their storage on servers to their passage through computer centres. Since they would never be deciphered, they could not be interpreted by the authorities or be compromised by a hacker attack.

Such an assurance of confidentiality would be valuable for any process that uses confidential information: the analysis of sensitive medical or financial data, the search for criminals without compromising the location of innocent people, or the certification of electronic voting without revealing the identity of voters.

“M$#,8T>;[A5;=;pr!”

For now, running an analysis algorithm on encrypted data would give a completely false result. The reason: encrypted information is, by definition, unintelligible. It is for example impossible to check whether a mobile phone was near the geographical point 49.6229485 North, 6.1102483 West when the GPS coordinates of the mobile phone are encrypted as “M$#,8T>;[A5;=;pr!” or to translate the diagnosis “colonoscopy: ascending colon cancer” once transformed into “Xdy19!aja£+T”.

The situation changed in 2009. Craig Gentry, a computer researcher at Stanford University, revealed a method of encrypting data that allows data to be analysed without being deciphered. Thanks to it, adding and multiplying encrypted bits gives the same result as if one did it on decrypted bits. Since these two operations form the basis of all computer logic, any algorithm can be run on protected data. This is the promise of this technique called “fully homomorphic encryption”.

One terabyte per 100 words

However, this approach remains more theoretical than practical, as the encryption process is far too inefficient: it multiplies the length of messages by a billion. Encoding a paragraph of text (around a kilobyte) thus generates an encrypted message 100 million pages long (around a terabyte). This explosion in the size of the data drastically increases the computing power needed to analyse it, and a one-second calculation would then take several decades.

“It is a very nice approach, but one that remains unusable in practice for the moment,” says Jean-Sébastien Coron. “Its lack of effectiveness is directly linked to its simplicity: instead of using complex mathematical operations, it simply combines additions and multiplications. As these operations are very easy to reverse, ensuring a certain level of security requires the use of an absolutely huge encryption key”.

The mathematician is therefore developing more efficient algorithms and has already managed to divide the necessary resources by 10,000. “This is a very encouraging result. My approach is both fundamental and pragmatic. I take theoretical processes that already exist and look for tricks to improve them.”

Encrypting artificial intelligence

The researcher also uses such approaches to encrypt not only the data but also the computer programmes that analyse it. This technique would be useful when a company runs its online programs in the cloud on commercial servers, such as those of Amazon or Google. Indeed, cloud computing not only optimises the use of IT resources but also creates the danger that the code itself could be stolen in the event of a security breach. One of his former colleagues founded a startup to use this type of encryption to protect neural networks, a particular type of algorithm used in artificial intelligence.

Questions about data security posed by Big Data and artificial intelligence require answers at all levels, notes Jean-Sébastien Coron. “It is one thing to allow a web giant to access our information; it’s another to have it taken over without our consent by other private or state actors, as we saw in the NSA and Cambridge Analytica scandals.”

The European Union has strengthened protections in 2016 with the General Data Protection Regulation. However, this cannot avoid problems and abuses, as data will continue to be pirated, and we will continue to approve – without reading them – licence agreements every time a new app is installed. “In such a context, constantly keeping the data encrypted would provide superior security,” says the researcher.

Despite his highly theoretical work, the mathematician is no stranger to the world of innovation, to which he has contributed some 20 patents: “I worked for six years in industry in the field of SIM and smart card security. I continue to work in this very practical field. For me, it complements very well my fundamental work on homomorphic encryption”.

About the European Research Council (ERC) 

The European Research Council, set up by the EU in 2007, is the premiere European funding organisation for excellent frontier research. Every year, it selects and funds the very best, creative researchers of any nationality and age, to run projects based in Europe. The ERC offers four core grant schemes: Starting, Consolidator, Advanced and Synergy Grants. With its additional Proof of Concept grant scheme, the ERC helps grantees to bridge the gap between grantees’ pioneering research and early phases of its commercialisation. https://erc.europa.eu/

Categories
21st Century Education Latest news

Better schooling to prevent dementia 70 years later

Anja Leist wants to find out how to resist the decline of our cognitive abilities in old age. Her international research has already achieved a first result: improving education helps prevent problems occurring decades later.

This article was originally published by the Luxembourg National Research Fund

Old age comes with physical and mental challenges, including cognitive decline, dementia and ailments such as Alzheimer, which have few, if no cures. What if we could do something about it in childhood? That is what Anja Leist believes, a public health professor at the University of Luxembourg.

“Sociological and psychological factors play a huge role in our cognitive reserve, meaning our capacity to resist the deterioration of our mental abilities,” explains Anja Leist. So far, scientists have identified factors explaining half of the differences observed in the population. A further 30% could be traced to factors such as education, social isolation, cardiovascular risk and midlife depression – much more than genetics, which accounts only for around 7%. “This is good news because they do represent huge potentials in terms of preventing the onset of decline later in life.”


Anja Leist © FNR / Rick Tonizzo
The burden of unequal education

The researcher and her colleagues found out that reduced access to education as a child decreases that individual’s cognitive reserve in later years, a result based on their analysis of a large survey made of more than 40 000 people in Europe.

The participants were followed over decades, providing information about their health, employment, family background and education, and performing tests every few years to measure their cognitive abilities such as memory or verbal fluency years. The international team looked for associations in the data, including country-level socioeconomic factors such as GDP, human development index or education inequalities.

“All these parameters are tightly intertwined. The goal of our research is to untangle them as much as possible. Our analysis revealed the importance of education: all other things being equal, cognitive reserve at greater age is lower in countries having larger inequalities of education opportunities. The latter measures how hard it is for children to attain a higher level of education when their parents had left school early.”

“Education inequalities can arise from subtle effects, including the unconscious biases we all have. In Luxembourg, for instance, parents indicate their profession on school documents. While this information has nothing to do with the actual performance of the children, it might still have an invisible influence on the way they are assessed.”

Higher risk for women

The effect of education on cognitive decline is, in fact, driven by one subgroup: women who left school early. Their cognitive decline at old age is greater for country showing greater educational inequality. Anja Leist stresses that the school attendance counts, and not only the opportunities school favours or hinders for the subsequent years:

“Of course, having a fulfilling job which stimulates our brain will increase our cognitive reserve over the years. But studies could disentangle the two factors. They compared states in the US which changed the obligatory school system, making it last longer. This did not really influence the type of employment which people had later, but one could observe an increase of cognitive reserve years later, showing that the length of education counts.”

These results suggest that increasing educational opportunities for children growing up in less educated families could represent a good investment in the future, as it would both reduce the burden for those affected and their families generated by dementia later and its substantial societal and economic costs.

Artificial intelligence meets sociology

But these massive population surveys have not yet revealed all their information. To study the data in more detail, Anja Leist is turning to machine learning, a technique of artificial intelligence often used to analyse Big Data.

“Our aim is to find out whether one intervention – such as encouraging fitness activities amongst middle-aged women – really does prevent dementia. In an ideal study, one would divide participants into two groups: the first one going to a fitness centre once a week, the other staying at home. While this would allow for a very clear comparison, it would be too unethical to be made in practice because it would prevent a healthier lifestyle bringing proven benefits in many health aspects.”

Leist’s idea is to use vast amounts of data to simulate such comparisons.

“We can use machine learning algorithms to identify within survey pairs of persons who are practically identical for all parameters such as age, education, profession, etc. except that one of them goes to the gym, the other not. This will allow us to make what we call a causal analysis and answer the question: what would have happened to the second person if they had behaved like the first one and had started going to the gym?”

Ultimately, such analyses could help identify which prevention measure has a higher impact on which population group and help target campaigns towards the population group at risk.

“So far, we have no convincing treatment against dementia,” says Anja Leist. “I believe any promising way to prevent it should be looked at – including building educational systems that give equal opportunities to children from all backgrounds.”

About the European Research Council (ERC) 

The European Research Council, set up by the EU in 2007, is the premiere European funding organisation for excellent frontier research. Every year, it selects and funds the very best, creative researchers of any nationality and age, to run projects based in Europe. The ERC offers four core grant schemes: Starting, Consolidator, Advanced and Synergy Grants. With its additional Proof of Concept grant scheme, the ERC helps grantees to bridge the gap between grantees’ pioneering research and early phases of its commercialisation. https://erc.europa.eu/

Categories
Latest news Sustainable & Responsible Development

War as an electoral weapon

Politicians and voters in the countries of Ex-Yugoslavia are still referring to conflicts which happened two decades ago. A political scientist wants to understand why and how to let go of the past.

This article was originally published by the Luxembourg National Research Fund

When French president Emmanuel Macron addressed the Coronavirus epidemic on 16 March 2020, he used the well-known rhetoric of war, repeating six times throughout his speech: “We are at war.” Such choice of words is often used to release extraordinary budgets and mobilize citizens against a public enemy, be it actual war, cancer, drugs or terrorism.


Josip Glaurdić © FNR / Rick Tonizzo

Strangely enough, the effect of real war on the political discourse and electoral processes has not been studied in much detail, says Josip Glaurdić, a political scientist working at the University of Luxembourg. He wants to fill this gap.

“I grew up in Croatia,” says the researcher. “I was a teenager during the conflict which shook Yugoslavia in the 1990s. It struck me to realize as a student that standard political theory made the assumption that wars did not really affect the usual polarizations found in politics, such as between religious groups, ethnicities, workers and capital or urban and rural regions. So I decided to get a closer look into it.”

He launched a large European project to uncover what the experience of war changed both for politicians and for voters living today in Bosnia-Herzegovina, Croatia, Kosovo, Macedonia, Montenegro, and Serbia. The first results show that political actors are often still stuck in the past. But also, that change seems possible.

Glory or suffering?

“Politicians still talk a lot about the conflicts, twenty years after it they ended,” says Josip Glaurdić. “Confronted with a difficult question about a current issue, they often evade the topic and divert the discussion towards the past. They ask for instance the question ‘Where were you during the war?’, which becomes normative.”

The researcher and his team used algorithms to analyse thousands of pages of speeches made by politicians in parliament, in public or on social media, studying the frequency of war-related concepts and whether they were positively or negatively connoted.

This analysis uncovered stark differences in the way politicians talk about former conflicts. Amongst members of nationalist parties, those who did not take parts in armed conflicts tend to use a more positive language. They talk about ‘victory’ and ‘unity’ or argue for instance that the State should support widows of soldiers in recognition of the ‘glorious sacrifice’ of their husbands. Those who experienced the war are more cautious and would rather talk about the widow’s suffering to justify supporting them. Politicians more on the left, especially the ones who did not fight, address the consequences of war in technical terms, addressing for example the need to fix infrastructure.

Gaming for political science

The research project also used targeted advertisement on Facebook to recruit 15 000 persons across the six countries to take part in several gamified online surveys. The participants had to take decisions in different situations, such as having to vote for different fictious politicians, after having filled in their sociodemographic information and answered questions about their war experience.

“The answers are very interesting,” says Glaurdić. “Between two hypothetical politicians with identical profiles, the one having fought in the war is more likely to get elected – nationalist voters would even forgive a conviction for corruption.”

The survey tests the hypotheses that people having experienced violence tend to trust their friends more than the media and are generally more risk averse. The participants were asked whether they would rather read news stories recommended by theirs friends or by the media. They also played the role of a mayor who must choose between two companies seeking a right of establishment, one promising higher employment but with higher risks.

Stuck in the past

In a third project, the international team surveyed citizens of Bosnia just before and after the 2018 national elections. “People in the Balkans tend to distrust politicians and the media,” explains Glaurdić. “This happens for a reason, because corruption and ideological media are still widespread. We wanted to find out if this distrust is fixed and is a liability of war or rather something more individual.” The researchers asked the participants what they thought about the electoral process and the media coverage.

Voters whose candidate had lost the election expressed more distrust than those whose candidate had won.

“On the one hand, this is myopic, like a player losing a game who complains about the rules being unfair to him. On the other hand, it is a positive sign as it shows that people are still engaged in the political process. They are not so much disillusioned to make democracy and fair media appear like a lost cause.”

Glaurdić’s research highlights the strong impact of the experience of war amongst politicians and voters, and that many of them seem to be still stuck in the past. With his work, he wants to understand whether this arises because of personal trauma or because of the politicization of the war. Above all, he wants to find out which factors can help both citizens and politicians escape this war narrative and political framing.

“The present situation is filled with crucial issues which urgently need to be solved,” he says. “Much more than dwelling on who did what 25 years ago.”

About the European Research Council (ERC) 

The European Research Council, set up by the EU in 2007, is the premiere European funding organisation for excellent frontier research. Every year, it selects and funds the very best, creative researchers of any nationality and age, to run projects based in Europe. The ERC offers four core grant schemes: Starting, Consolidator, Advanced and Synergy Grants. With its additional Proof of Concept grant scheme, the ERC helps grantees to bridge the gap between grantees’ pioneering research and early phases of its commercialisation. https://erc.europa.eu/

Categories
Industrial & Service Transformation Sustainable & Responsible Development

Put some sunshine in your engine

A chemist wants to use solar energy to produce hydrogen from water. His idea? To draw inspiration from the molecules that allow plants to grow and animals to breathe.

Generating electricity or hot water from the sun is a well-known idea. However, solar energy could also be used to turn water into hydrogen or turn carbon dioxide into synthetic methane. Thus, produce “solar fuels”.


Nicolas Boscher © FNR / Rick Tonizzo

This is the approach followed by Nicolas Boscher, a researcher at the Luxembourg Institute of Science and Technology (LIST). He is developing new polymers capable of producing hydrogen in a clean and renewable way. This is crucial if it is ever to supply fuel cells to power cars, trucks and merchant ships over long distances. Nevertheless, doing so with a positive carbon balance requires being able to produce the gas cleanly, without greenhouse gas emissions.

This is difficult: hydrogen is mainly produced from methane in a reaction that emits CO2. Other processes use water, which is dissociated into hydrogen and oxygen using an electric current. Since the available electricity is partly generated from fossil fuels, this method indirectly emits carbon dioxide. As a result, hydrogen is not yet a clean fuel.

Molecules of Life

“Scientists have developed many materials to dissociate water into hydrogen from solar energy, but their efficiency is still too low or their cost too high,” notes Nicolas Boscher. “I think that a paradigm shift is needed and that entirely different approaches need to be tested”.

His inspiration comes from nature: the chemist wants to take advantage of a class of molecules crucial to life, porphyrins, which are involved in the breathing of living beings. They form the basis of haemoglobin, which transports oxygen in the blood, and chlorophyll, which enables plants to produce carbohydrates.

“These ring-shaped molecules are very versatile,” continues the researcher. “They are like Swiss Army knives for a chemist like me.”

The first stage of Nicolas Boscher’s project consists of creating porphyrin polymers and weaving them into a three-dimensional network. This extremely porous material allows water molecules to pass through. These molecules can then interact with the porphyrins. By absorbing sunlight, their ring produces an electron that dissociates water into its two components, hydrogen and oxygen.

Infographics by Ikonaut
Chemical synthesis in a vacuum

If the idea seems simple, implementing it is less so. Because porphyrins, insoluble in water, are difficult to handle by traditional chemistry based on reactions in liquids. The scientist uses a different type of process: he reacts the different components by mixing them in gaseous form at very low pressure.

“This technique, chemical vapour deposition, is typically used in the manufacture of electronic chips. I did my first research in this field, which allowed me to adapt these methods to work with organic components, including porphyrins.”

The team has already been able to make thin porous layers that join two hydrogen atoms into a gas molecule. It still must be combined with the preliminary step of dissociating the water into hydrogen atoms and gaseous oxygen.

Towards a greener chemistry

The renewable production of hydrogen can also be used to produce synthetic methane and plastics, which generally come from the fossil fuel sector. This requires combining it with carbon atoms, obtained by extracting CO2 from the ambient air or by filtering the gases emitted in thermal power stations. This would represent a giant step towards green chemistry, which does not use fossil fuels either as a source of energy or as a raw material.

This article was originally published by the Luxembourg National Research Fund

About the European Research Council (ERC) 

The European Research Council, set up by the EU in 2007, is the premiere European funding organisation for excellent frontier research. Every year, it selects and funds the very best, creative researchers of any nationality and age, to run projects based in Europe. The ERC offers four core grant schemes: Starting, Consolidator, Advanced and Synergy Grants. With its additional Proof of Concept grant scheme, the ERC helps grantees to bridge the gap between grantees’ pioneering research and early phases of its commercialisation. https://erc.europa.eu/

Categories
Industrial & Service Transformation

Information is not power, but above all, energy

A physicist has developed a new theory of thermodynamics to describe the microscopic world. It explains the astonishing efficiency of biological motors in our cells, improves the efficiency of chemical reactions and reveals the concrete role played by this abstract concept: information.

This article was originally published by the Luxembourg National Research Fund

At the beginning of the 19th century, steam engines began to move trains and industrial power machines. Thermodynamics at that time developed theoretical tools to analyse their energy balance and improve their efficiency. Two centuries later, a physicist from the University of Luxembourg invented novel thermodynamics to study microscopic phenomena. His work and the contributions of researchers from all over the world have led to a better understanding of fundamental biological, chemical and electronic phenomena, and to the imagination of how to push back the limits of their efficiency.


Massimiliano Esposito © FNR / Rick Tonizzo
Efficiency and power, simultaneously

Massimiliano Esposito has discovered a surprising principle: while it is impossible to maximise the efficiency of an engine and its power simultaneously, as motorists are well aware, it is possible to achieve the equivalent in chemical reactions.

“Traditional chemistry normally proceeds rather slowly,” explains the researcher. “Just as in cooking, ingredients are added to containers, mixed, cooked and then left to set. But it can be done differently, by bringing in constant flows of reagents through tubes. This results in rapid reactions.”

Esposito analysed these chemical reactions as thermal machines and showed that it is indeed possible to produce molecules both abundantly and efficiently – an impossible optimum in conventional thermodynamics.

The secret is to work in a different regime. Standard thermodynamics is normally concerned with situations close to equilibrium or a stationary regime characterised by slow and constant flows. Massimiliano Esposito, on the other hand, has developed a theory of out-of-equilibrium thermodynamics: it describes abrupt changes, and in these conditions, it enables to go beyond the usual limits of efficiency.

Exploring such a regimen naturally leads to the microscopic world, because the smaller the system, the faster and stronger it reacts: the air in the centre of a balloon, for example, is protected from external influences by numerous layers of air. On the contrary, a molecule constituting a nanoparticle is very close to the surface and participates fully in the reactions.

Cellular railway

Equipped with the concepts he has been developing for the last ten years, Massimiliano Esposito tackles a wide variety of problems. Recently, he has been studying the astonishing efficiency of kinesins, molecular motors charged with transporting biochemical structures inside living cells. Like locomotives, these proteins move along microtubules – filaments acting as rails – towing their cargo behind them.

His work suggests that collective effects may explain the efficiency of these phenomena essential to life. Using simplified models, he has shown that the efficiency of these motors increases tenfold when they operate in a synchronised fashion, like rowing machines. The total power is then far greater than the sum of the individual motor powers.

Confronting a demon

His concepts have also made it possible to elucidate a famous mystery – or paradox – of physics: Maxwell’s Demon, an imaginary devil who would sort gas particles according to their speed in order to cool a gas without consuming energy, in flagrant contradiction with the second law of thermodynamics. One of his articles inspired a Finnish team to build a real Demon based on a pair of tiny electronic structures called quantum dots. In this experiment, the first quantum dot plays the role of the demon: it influences the number of electrons trapped in the second without expending any energy. In doing so, it cools its environment, as if a river were beginning to flow back towards its higher source.

This sacrilegious experiment roughs up the laws of thermodynamics, explains the physicist, but it does not contravene them. However, it is crucial to take into account not only energy balances but also information transfers, because information is not free and has an energy cost that can be quantified. These considerations are not just imaginary demons but are at the basis of information theory, which is crucial in computing and telecommunications.

The importance of solid foundations

Like thermodynamics in its early days, Massimiliano Esposito’s work is very theoretical. But they are often taken up by scientists who tackle concrete problems: biologists studying cells, chemists seeking to optimise reactions, or engineers making devices to generate electricity in satellites thanks to the temperature differences in space.

“The aim of my work is to develop a solid and reliable theoretical basis that is useful to other specialists. But I also want to encourage links between physicists, biologists and engineers. The solutions developed by nature are often extremely effective. It is up to us to understand why.”

About the European Research Council (ERC) 

The European Research Council, set up by the EU in 2007, is the premiere European funding organisation for excellent frontier research. Every year, it selects and funds the very best, creative researchers of any nationality and age, to run projects based in Europe. The ERC offers four core grant schemes: Starting, Consolidator, Advanced and Synergy Grants. With its additional Proof of Concept grant scheme, the ERC helps grantees to bridge the gap between grantees’ pioneering research and early phases of its commercialisation. https://erc.europa.eu/

Categories
Industrial & Service Transformation

Kaleidoscopic microbeads to fight counterfeiting

A physicist invented a new method to authenticate objects by using the strange properties of liquid crystals. He also spun them into smart elastic bands for applications in soft robotics and wearable technologies.

This article was originally published by the Luxembourg National Research Fund

Fingerprints and other QR codes are well established but have a serious weak point: they can be easily copied. A team from the University of Luxembourg has invented a new method to hinder the counterfeiting of identity cards, works of art or industrial products. It uses the highly complex light pattern generated by liquid crystals, known in daily life from their use in LCD screens.

“The patterns we can create are absolutely unique,” explains Jan Lagerwall, the project leader. “They are robust enough to be reliable but too complex to be copied.”


Jan Lagerwall © FNR / Rick Tonizzo

The technology is based on liquid crystals, a peculiar state of matter which combines the regularity of solids at microscopic scale with the disorder of liquids over centimetres. The crystalline structure is key: it creates the pattern by reflecting light in different directions and colours, much like the shell of some beetles producing iridescent hues.

The fluidity brings in randomness and thereby the uniqueness of each pattern.“It’s important to strike the right balance,” says the Swedish-born researcher. “It should be random enough to make copying very hard, but not too sensitive to avoid manufacturing problems.”

An app to authenticate objects

The physicist has teamed with IT specialists to develop a practical authentication service. First, the scientists produce the tag with the help of microfluidics to mix organic molecules. This creates microscopic shells containing liquid crystals, similar to oil drops which would be filled with water. They incorporate them within a transparent polymer in order to fix and protect them. This thin plastic sheet can finally be glued as a tag on an object.

The pattern produced by shining light on the tag is recorded in a database and serves as reference. The end-user can then authenticate the object by taking a picture of the tag with their smartphone and comparing it with the original picture stored in the database.

“Each pattern is completely unique because it depends on the precise location of the spheres, their size and the properties of the liquid crystal they contain,” says Lagerwall. “Trying to copy the pattern would be too difficult to be practically feasible. We are making good progress and we are collaborating with a company to develop and test our solution.”

The tags could find other applications, he adds. For instance, labels working with infrared light are invisible to humans but would be decipherable by computers. Glued on walls, they could help autonomous devices navigate indoors, and in locations where GPS signal is lost.

Smart elastics

The Luxembourg scientists have also spun liquid crystal into fibres to create elastic bands that change colour upon stretching. Woven into clothes, they could be analysed by a camera to detect body movements, a feature useful for sensors in wearable technologies or exoskeletons.

These mechanical devices worn over the arms and legs amplify the user’s movements, for instance by using electrodes to read out the electrical impulses going through the nerves. Here the colour changes of their clothes could be used to map the movement and control the device, explains Lagerwall. His team has also created elastic bands which contract when heated up or illuminated with light, a technology that could be useful for creating artificial muscles used in soft robotics.

Order and disorder

The functionalities of a liquid crystal arise from the way its molecules align: while their distribution is random like in a fluid, their orientation is not. The artificial muscle uses molecules that are all oriented along the elastic band. It gets contracted by heat because it destroys this alignment, the same way the structure of an ice cube gets lost when it melts into water. Optical applications work with chiral molecules, whose orientation follow a helix pattern. This makes them reflect light when it is polarized and has the same wavelength as the helix pitch, which can be controlled by temperature and stretch.

“Liquid crystals offer an amazing playground,” says Lagerwall. “We are now able to fix them in a variety of shapes such as short fibres and empty or filled spheres, with either parallel or helicoidal alignments. Many interesting results from our work actually came up by serendipity, that is, by chance. Some show great potential for useful applications, other are very much more fundamental in nature. This can appear useless today, but who knows about tomorrow?”

About the European Research Council (ERC) 

The European Research Council, set up by the EU in 2007, is the premiere European funding organisation for excellent frontier research. Every year, it selects and funds the very best, creative researchers of any nationality and age, to run projects based in Europe. The ERC offers four core grant schemes: Starting, Consolidator, Advanced and Synergy Grants. With its additional Proof of Concept grant scheme, the ERC helps grantees to bridge the gap between grantees’ pioneering research and early phases of its commercialisation. https://erc.europa.eu/

Categories
Industrial & Service Transformation Latest news

A microscope faster than light

Physicist Daniele Brida develops ultrafast lasers to follow in slow-motion chemical reactions and the inner working of electronic devices. This new kind of microscope allows the observation of phenomena at the nanoscale that were until now just too fast to be seen – improving photovoltaics and electronics devices.

This article was originally published by the Luxembourg National Research Fund

It started with a simple question: “How do we see?”. We know it is thanks to our retina. It is covered with photoreceptor cells called cones, which are sensitive to colours, and rods, sensitive to low light. But how do rod cells function so sensitively and react when a single particle of light, a photon, reaches them?


Daniele Brida © FNR / Rick Tonizzo

The mechanism behind this feat is like a loaded spring ready to snap, explains Daniele Brida, a physicist at the University of Luxembourg: 

“Rods are lined with a protein called visual purple, or rhodopsin. They are shaped like a cylinder. Inside it, a chain of carbon atoms unbends as soon it is hit by a photon. This starts a cascade of chemical reactions that ends up sending an electrical signal to the optic nerves.”

Faster is better

Around ten years ago, the physicist found experimental evidence of this theory by following the discharging of the loaded molecular spring. This experiment was possible thanks to an ultrafast laser built by Brida.

“One usually imagines that new instruments should be able to see smaller – or larger – things,” he says. “But looking at faster phenomena brings a crucial new understanding of chemical reactions or of the working of microchips.”

The Italian-born physicist keeps developing new systems. They resemble a forest of mirrors and lenses which split and redirect laser beams, all precisely arranged to generate extremely short pulses of light. The goal is to manipulate and visualize the motion of electrons, which constitute the basis of both chemistry and information processing devices.

His team at the University of Luxembourg can now shape laser pulses lasting around one femtosecond or one millionth of one billionth of a second (as a comparison, there are as many femtoseconds in one second as there are seconds in 30 million years).

These tools can help other scientists gain insight in fundamental processes involving the absorption of light, such as vision in animals, photosynthesis in plants and the conversion of solar energy into electricity in photovoltaics devices.

This is particularly important for organic solar cells, which are based on polymers as opposed to silicon as in standard solar modules. This technology could bring lower production costs and bendable modules, but is still struggling with low efficiency. Improving it will require studying exactly how the organic material generates free electrons when they absorb light.

Decades of work

Of course, a movie made with light cannot possibly be faster than light itself. Scientists use a trick: they carefully repeat the same experiment, again and again, recording a single measurement at a slightly different time. Once put to together, this data creates a time-lapse of the phenomena, a slow-motion movie somewhat reminiscent of a famous scene in the film “The Matrix” where the camera seems to circle around a flying bullet.

“We are building everything ourselves,” says the physicist. “At the beginning I used to do everything alone, as I thought I could do it quicker myself. But then I learned patience, to guide students and empower them. It is crucial because our work goes over decades and we need more and more people working on it. We are still at the start: we need to prove our approach really works. But then I believe we’ll open a whole new field.”

The electric light

Ultrafast microscopy can also be used to observe how electrons move across nanoscale devices. This could help with designing new microchips for high-speed electronics as well as developing quantum computers, a radically new type of information processing machine.

The devices developed at the University of Luxembourg exploit the fact that light is an electromagnetic wave, just like a radio signal or an X-ray. Because of that, it can be used as a source of a rapidly oscillating electric fields.

“We are now able to generate light pulses which are shorter than one oscillation of the electromagnetic wave. In this case, the system feels an electric field that grows, peaks, and decreases extremely rapidly. This allow us to use a laser as an electrode to study nanoelectronic devices. A first ultrashort laser pulse pushes electrons in a precise way, and a second pulse records how they move across the device.”

Beating Heisenberg

The physicist adds a deeper consideration:

“In our experiment, we sort of beat the Heisenberg Uncertainty Principle, a fundamental limit to what can be observed in a microscopic system obeying the laws of quantum mechanics. It is linked to the fact that looking at something will always change it, making it impossible to know it perfectly.

We nevertheless found ways to really understand what is happening in the molecules we observe. Here, our work addresses deep questions of fundamental physics. They are not directly relevant for applications. But that’s also what motivates me to go to the lab.”

About the European Research Council (ERC) 

The European Research Council, set up by the EU in 2007, is the premiere European funding organisation for excellent frontier research. Every year, it selects and funds the very best, creative researchers of any nationality and age, to run projects based in Europe. The ERC offers four core grant schemes: Starting, Consolidator, Advanced and Synergy Grants. With its additional Proof of Concept grant scheme, the ERC helps grantees to bridge the gap between grantees’ pioneering research and early phases of its commercialisation. https://erc.europa.eu/

Categories
Industrial & Service Transformation Latest news Personalised Healthcare

When the drugs don’t work

Chemical compounds can have several stable forms – with dramatic consequences. A physicist at the University of Luxembourg can predict when this can occur: he has develop methods to precisely calculate the stability of molecules. These tools are now used by hundreds of scientists worldwide. They could also help understand why the new coronavirus is so contagious.

This article was originally published by the Luxembourg National Research Fund

It happened again. In 2008, the Parkinson drug Neupro had to be recalled from pharmacies, because it appeared that some of the pills were less soluble than the original and could not be properly absorbed by the body. A similar case had happened a decade earlier with the HIV drug Norvir.


Prof Alexandre Tkatchenko | ©️ FNR / Rick Tonizzo

The problem lies in the solid formulation of the drugs, explains Alexandre Tkatchenko from the University of Luxembourg. It should ensure that they can be correctly absorbed by the body and released. But sometimes, the crystalline structure has several stable forms with different properties. A very slight change in the production facility can then create batches of drugs which are not soluble and therefore cannot be absorbed by the body.

“Not only do we need to know which microbes are involved but above all what they really do,” explains the biologist. “The interplay between certain bacteria and a disorder will happen via molecules which can trigger a cascade of reactions in the body, for example, by interfering with biochemical pathways. What we aim to do is to “Chemists can monitor production if they are aware that the drug has several stable forms,” says Tkatchenko. “But sometimes they don’t know it is possible. This is where my work can be very useful, by alerting them of the possibility.”

Wave matters

The Russian-born physicist studies the behaviour of large molecules with unprecedented detail. Crucially, he takes into account the effects of quantum physics, the theory which describes the microscopic world in terms of overlapping waves.

“Many models until now neglected quantum effects or used simplifications too crude to be accurate. Our work has shown that they are actually crucial in many cases and were behind the problem of the Parkinson drug Neupro.”

His team has been developing computer simulations of molecules for a decade now, improving them bit by bit. These algorithms are published and reused by hundreds of physicists, biologists and chemists worldwide, including many working in pharmaceutical companies.

“Our methods have been used to analyse at least 50 different drugs, but I don’t always know who uses them: sometimes they cite us, sometimes not. But the important thing for me is that my work is useful to others.”

Quantum life

The same techniques are useful to study proteins, large molecules made of thousands of atoms and involved in numerous mechanisms in living organisms. The Luxembourg team recently discovered that quantum effects play an essential role in the way proteins fold, a fundamental process where they acquire the shape that enables them to function.

“Proteins often work by locking into other macromolecules, like a key fits only a specific lock. Our calculations have shown that quantum effects related to the wave characters of electrons make the unfolded protein more stable when it is diluted in water, which is always the case in living organisms. This shows that quantum physics, which has been used in inanimate devices like lasers or microchips, has an impact on life itself.”

Tkatchenko’s models could help explaining the virulence of some pathogens, such as the novel coronavirus.

“It is known to attach to ACE2, a protein situated at the surface of human cells which are in particular found in lungs. Other coronaviruses bind to the same receptor, but SARS-Cov-2 does it much more strongly, which probably contributes to its high contagiousness. To understand this strong binding, we want to look in detail at the way the viral protein, which has the shape of a spike, locks into ACE2. I expect that quantum effects play an important role.”

Machine learning meets quantum mechanics

The key for the reliable analysis of complex molecules is to find models which are precise enough without taking too much computing resources. 

“We have now developed a very robust model to describe the way distant parts of molecules influence each other. But an additional part deals with forces at short range. As it actually depends on the configuration of the first part it should be solved again and again at each step of the calculation, which requires a lot of computation time.”

To overcome this problem, the physicist’s team turned to machine learning, the technique that allows algorithms to learn to recognize images or to beat humans at chess. They fed an algorithm with a training set of data linking a certain configuration of the first, long-range part to an adequate model for the second, short-range part. It can then learn to guess very rapidly what model should be used at each step of the calculation, which makes the simulation fast enough to be practical.

“Simulating a large molecule is always a balancing act,” says Alexandre Tkatchenko. “If you include too many details, the calculations take weeks. If you oversimplify the model, you get results which are not reliable. It’s a question of finding the right balance. This is what I like in this work.”

About the European Research Council (ERC) 

The European Research Council, set up by the EU in 2007, is the premiere European funding organisation for excellent frontier research. Every year, it selects and funds the very best, creative researchers of any nationality and age, to run projects based in Europe. The ERC offers four core grant schemes: Starting, Consolidator, Advanced and Synergy Grants. With its additional Proof of Concept grant scheme, the ERC helps grantees to bridge the gap between grantees’ pioneering research and early phases of its commercialisation. https://erc.europa.eu/

Categories
Latest news Personalised Healthcare

What microbes really do in our guts

Countless microorganisms live peacefully in our body, but they also can be involved in many diseases. To find out exactly what role they play, a biologist has given himself a Herculean task: survey all the biomolecules produced by the microbes residing in our guts.

This article was originally published by the Luxembourg National Research Fund

You, as a body, are never truly alone. Each of us harbours an incredibly large number of bacteria, viruses and fungi: around tens of billion in total, slightly more that the number of human cells.

Most of the time, these strangers live with us in good harmony. But changes in our microbes’ population, our so-called microbiome, have been found to be related to many diseases – via mechanisms that remain largely unknown. To understand what exactly happens in our stomach and intestines, Paul Wilmes from the University of Luxembourg has a grand plan: survey all the molecules produced by the microbes living in our body and unravel their relationships to diseases.


Prof Dr Paul Wilmes © FNR / Rick Tonizzo

“Not only do we need to know which microbes are involved but above all what they really do,” explains the biologist. “The interplay between certain bacteria and a disorder will happen via molecules which can trigger a cascade of reactions in the body, for example, by interfering with biochemical pathways. What we aim to do is to find out which microbes are involved in a disease, list and analyse all the molecules they produce to understand how these affect our health. If we succeed, our work could allow many new therapeutic approaches for chronic conditions which currently have only a few treatments or none at all.”

The researcher’s team in Luxembourg is focussing on three diseases: Parkinson’s, rheumatoid arthritis and type-1 diabetes. These conditions are all related to chronic inflammation, which is known to be associated with changes in the human gut microbiome. 

For the first part, Paul Wilmes’ team has developed impressive tools to process samples and make them ready for biochemical analyses automatically.

“Because stool is very heterogeneous, it is crucial to use for the analysis a representative sample and extract as much information from this sample as possible,” explains the researcher.

His team has built a robotic platform that takes a small sample and cracks microbes open to extract the biomolecules contained within, separate them from the products found outside, and sort all the compounds according to their chemical properties. These include DNA and RNA, peptides, proteins, lipids and carbohydrates. In the last step, the molecules are analysed by various techniques: genetic sequencing as well as gas and liquid chromatography coupled to mass spectrometry.

Why Parkinson’s starts in the guts

The researchers have already some preliminary results for Parkinson’s disease. After having observed different microbial populations in healthy and sick persons in 2017, they were recently able to identify one specific molecule that could help understand the role played by microbes in the disease.

“It seems surprising that a neurological condition like Parkinson’s might originate in the gut, but this is a long-standing hypothesis,” says Paul Wilmes. “It is for example possible that a microbiome-derived molecule may be involved in the pathogenesis of Parkinson’s in the gut. It might take decades for the disease to spread from the gut to the brain and it might be only at a rather advanced stage that the disease then really manifests itself through the classical Parkinsonian symptoms.”

On an empty stomach

To go one step further, the team has partnered with German hospitals in Berlin and Kassel. They will observe the changes in the biomolecules found in the gut while patients follow a fasting regimen aimed at lessening the symptoms of either Parkinson’s or rheumatoid arthritis.

“By tracking the changes over time, we hope to be able to show causality: that the presence of certain molecules is really the cause of a disease and not a mere consequence of it.”

The project will recruit 30 patients for each of the two diseases who will undergo therapeutic fasting for one year. First, their guts are emptied with the help of laxatives in order to get rid of most of the gut microbes and their biomolecules. The patients reduce their food intake for a week to a modest 400 kilocalories per day (a sixth of the usual recommendations) in the clinic, which deprives the bacteria in the gut of their nutrients and lessens their activity.

This allows the scientists to precisely follow the evolution of the concentration of biomolecules by analysing stool samples, and to compare them with the reappearance of the disease’s symptoms and evolution of specific biomarkers in the body. After the intervention, the patients are followed for a year during which time they follow a dietary maintenance regimen.

A gut in a shoebox

The last step is to precisely study the effect of the specific microbes and molecules uncovered in the first parts of the project. For this, Paul Wilmes and his colleagues use a device the size of a shoebox which they had developed previously to simulate the gut. A series of small chambers connected by microfluidic channels replicate the different parts of the digestive tract, such as the small and large intestines, which have different environmental conditions and microbe populations. The scientists can then analyse what happens when human cells, grown in the presence of oxygen, interact with specific microbes, cultivated without it.

“This tool could be used to check whether a drug can inhibit the production of a pathogenic microbial molecule product,” says the biologist. “This could be very useful in drug discovery and testing. We are currently planning to launch a start-up to offer such services to pharma companies.”

About the European Research Council (ERC) 

The European Research Council, set up by the EU in 2007, is the premiere European funding organisation for excellent frontier research. Every year, it selects and funds the very best, creative researchers of any nationality and age, to run projects based in Europe. The ERC offers four core grant schemes: Starting, Consolidator, Advanced and Synergy Grants. With its additional Proof of Concept grant scheme, the ERC helps grantees to bridge the gap between grantees’ pioneering research and early phases of its commercialisation. https://erc.europa.eu/

Categories
Industrial & Service Transformation Latest news

Artificial intelligence can be smarter

Machine learning algorithms seem all-powerful, but still function passively: they merely analyse the data they are fed with. Björn Ottersten makes them smarter by letting them actively probe their environment. His work aims to improve sensors of self-driving cars, sharing of mobile bandwidth and Internet traffic.

This article was originally published by the Luxembourg National Research Fund

Thirty million kilometres: this is the impressive distance travelled by Waymo’s autonomous cars, a company launched by Google in 2016. Enough to make 6 000 round trips between New York and Los Angeles. This feat is one of the most striking examples of the power of machine learning. It allows algorithms to learn to recognise and interpret the car’s environment: road signs, other vehicles, pedestrians, construction sites.


Prof Björn Ottersten is the Director of the Interdisciplinary Centre for Security, Reliability and Trust (SnT) at the University of Luxembourg | ©️ FNR / Rick Tonizzo 

But this essential technique of artificial intelligence can be improved, says Björn Ottersten, the director of the Interdisciplinary Centre for Security, Reliability and Trust (SnT) at the University of Luxembourg: 

“For now, most machine learning algorithms work  passively. They analyse huge sets of data to establish links until they can reproduce the correct behaviour by understanding that  a certain combination of sensory signals demands a reduction of the ‘car’s speed. After that, it is set to work, but it cannot readily  adapt to new conditions.” 

Professor Ottersten, an electrical engineer by training, wants to make algorithms smarter by making them active and letting them probe the environment when the situation demands it. 

“That’s what humans do: we constantly probe our surroundings to  gather more information, for example, by moving our head to get a new perspective or talking to others to get insights from  them.” 

His group is applying this concept in three concrete applications: helping radar systems, such as the ones found in autonomous vehicles, detect  sudden changes in their surroundings, sharing bandwidth in the mobile cellular network, and accelerating the delivery of large files online, such as videos.

Focussing the radar

To perceive their environment, self-driving cars use a combination of sensors, such as cameras and radars. The latter send out radio waves and analyse the reflected signals, much like bats navigate obstacles in a cave or like an echography image the interior of the womb. 

Ottersten‘s team is developing a system to allow radars to focus extremely fast on any object that requires a more detailed analysis, such as a child chasing a balloon and jumping on the road from behind a van. The van reflects waves so strongly that they might obscure the child‘s signal, making it difficult for the algorithm to interpret these waves correctly as coming from a person, estimating their movement and velocity to adapt and prevent an accident. 

The system developed in Luxembourg will send waves at a rapid rate, analyse the returning signal and decide whether to concentrate on an object. It will then iteratively focus more and more on the object, providing the self-driving car with more information.  

Share my bandwidth

The Swedish-born researcher pursues a similar approach of adaptive intelligent systems to optimise the use of the cellular  network, in collaboration with SES, a satellite operations company based in Luxembourg. 

“The usage of bandwidth is currently  not yet optimised,” he explains. “An operator can sublet part of its allocated radio band to a second operator, as long the quality of its services is not impacted. Consequently, the second operator does not dare to use its share as much as it could.” 

His team develops a probing method which continuously tries out various ways of sharing the bandwidth by allocating a different combination of  frequency, signal power, location and time slots. The scientists can then look at the impact on the first operator and learn iteratively which combination works.

In a third project, the research team tries to improve the online delivery of large files, such as videos. It works when the use is not time-sensitive, such as watching a movie, not for streaming live events. The idea is to use the popularity of different contents and the regional demographics to  estimate which file might be heavily downloaded in certain regions and at certain times, similarly to recommendation algorithms on shopping  websites. The files are downloaded to servers located close to the users ahead of time when the network is off-peak – a process called caching.

This approach saves network resources because the files travel shorter distances when the content is accessed, which usually happens at similar  times. In this case too, algorithms will test different guessing approaches and look at the impact on the network, constantly learning to adjust their strategy.  

This approach saves network resources because the files travel shorter distances when the content is accessed, which usually happens at similar  times. In this case too, algorithms will test different guessing approaches and look at the impact on the network, constantly learning to adjust their strategy.  

The meeting of two worlds

Björn Ottersten says he’s convinced that machine learning, while already extremely powerful, might be further improved:

“We can augment the data-driven, bottom-up approach with a modelling of our understanding of the real world, a top-down perspective. Take the self-driving car: it has learned from the millions of kilometres it has driven, but this is mainly valid for the precise sensors which were used. It is unclear how well the algorithms will perform once you change the type or placement of sensors.

To solve this question, one can let the car travel virtually in a simulated world based on models to test the effect of such changes. This is what inspires me to develop a more active artificial intelligence which interacts with its environment.”

About the European Research Council (ERC) 

The European Research Council, set up by the EU in 2007, is the premiere European funding organisation for excellent frontier research. Every year, it selects and funds the very best, creative researchers of any nationality and age, to run projects based in Europe. The ERC offers four core grant schemes: Starting, Consolidator, Advanced and Synergy Grants. With its additional Proof of Concept grant scheme, the ERC helps grantees to bridge the gap between grantees’ pioneering research and early phases of its commercialisation. https://erc.europa.eu/